“A steady roar thundered across the water as everything moveable broke loose.
There had never been a mixture like it-–29 boilers . . .the jeweled copy of the
Rubaiyat . . . 800 cases of shelled walnuts . . . 15,000 bottles of ale and
stout . . . huge anchor chains (each link weighed 175 pounds) . . . 30 cases of
golf clubs and tennis rackets for Spalding . . . Eleanor Widener’s trousseau .
. . tons of coal . . .”
Walter Lord, A Night to Remember (1955)
Still from movie Titanic (1997) |
(This blog has been updated slightly [links checked, new information], April 2018.)
This April is the 103rd anniversary of the sinking of the Titanic. In 2007, I visited "Titanic: the Artifact Exhibition" at the Royal British Columbia Museum in Victoria, British Columbia, Canada, just before the start of that year’s combined meeting of The Society for Organic Petrology (TSOP) and the International Committee on Coal and Organic Petrology (ICCP). The museum is in the first block south of the majestic Empress Hotel on the inner harbor of Victoria. (I followed up my early Friday evening time-ticketed exhibit visit with supper and cocktail on the veranda of the Empress.) The Titanic, of course, is the great British steamship, touted as "unsinkable", that, on its maiden voyage from England to New York, struck an iceberg in the North Atlantic late on Sunday night, April 14, 1912; it sank beneath the ocean surface a few hours later in the early morning of April 15. The traveling exhibit, both through passenger and steamship effects recovered from the seafloor, and through recreations of the ship's interior, told the story of the disaster, life on board, the variety of passengers and their reasons for sailing. The exhibit exited at a gift shop; I purchased a pendant that enclosed a small piece of Titanic coal from the seafloor. I thought that was an appropriate remembrance for me, being 1) a coal petrologist, and 2) born on April 15.
This April is the 103rd anniversary of the sinking of the Titanic. In 2007, I visited "Titanic: the Artifact Exhibition" at the Royal British Columbia Museum in Victoria, British Columbia, Canada, just before the start of that year’s combined meeting of The Society for Organic Petrology (TSOP) and the International Committee on Coal and Organic Petrology (ICCP). The museum is in the first block south of the majestic Empress Hotel on the inner harbor of Victoria. (I followed up my early Friday evening time-ticketed exhibit visit with supper and cocktail on the veranda of the Empress.) The Titanic, of course, is the great British steamship, touted as "unsinkable", that, on its maiden voyage from England to New York, struck an iceberg in the North Atlantic late on Sunday night, April 14, 1912; it sank beneath the ocean surface a few hours later in the early morning of April 15. The traveling exhibit, both through passenger and steamship effects recovered from the seafloor, and through recreations of the ship's interior, told the story of the disaster, life on board, the variety of passengers and their reasons for sailing. The exhibit exited at a gift shop; I purchased a pendant that enclosed a small piece of Titanic coal from the seafloor. I thought that was an appropriate remembrance for me, being 1) a coal petrologist, and 2) born on April 15.
I had been aware that some of the coal
from Titanic had been recovered
and sold as part of the fundraising for Titanic
recovery and research. Coal lumps, in fact, are the only recovered artifacts
that have been ruled legal for sale since they are considered
"natural" objects and not man-made (http://law.lclark.edu/live/files/11855-lcb163art8zekalapdf).
Although some online photos or details on certificates of authenticity (COA)
indicate that coal lumps could be very large (=>3 kg), one photo taken in a Titanic coal bunker before sailing shows
mostly fist-size coal. Smaller pieces sold, including those in jewelry or
crushed coal mounts, are taken from the larger pieces, and the COA for those
specimens are, therefore, derivative. For example, the "object
number" for the coal in my pendant is 94/0036: 1994 being the year of
collection and 36 the sample number. An onboard photo of a crew member holding the supposed original 94/0036 coal nodule shows it to be about 30 cm x 25 cm
x 10 cm. (This photo is no longer easy to find online but sometimes accompanies small pieces of coal for sale with the 94/0036 COA.)
However, a Google image search for just "Titanic coal" produces several offered coal fragments, with
COAs of different styles, but the same 94/0036 number! Certainly, many small
pieces could be derived from the large original nodule, but is the volume sum
of marketed pieces greater than the original whole? The seller at the above
link does mention concern with authenticity of the coal being offered. (Addendum, June 11, 2015: Three days ago, I visited the permanent Titanic exhibit at the Luxor casino in Las Vegas, Nevada, USA. The one large lump of coal on display had the sample number, 94/0036.075: same as the numbers mentioned above, but with 3 more digits after a decimal point. My guess is that 94/0036 is a batch number for all coal retrieved in the 1994 expedition, and that ".075" is a nodule/lump number that is not included on samples offered for sale.)
Titanic could
hold 6611 tons of coal in bunkers and an additional 1092 tons in Hold 3 (Hutchings
and de Kerbrech, 2011; full citations at end of this post). There are variable reports on how much coal was onboard
at sailing. Sheehan and Sickels-Taves (2002) state just under 6000 tons;
website http://atlanticliners.com/white_star_home/titanic_home/ says 5892
tons. Essenhigh (2004) writes that the six bunkers were only half full
with 800 tons each (=4800 tons). Smith (2005) cites a website (no longer
active) that reported 4427 tons were in the bunkers; Palmer and others (2003)
said "more than 4000 metric tons". Steam for the two steam engines
and one steam turbine was produced in 29 boilers that contained 159 furnaces.
Six hundred tons of coal/day were shoveled into the furnaces around the clock
by a total complement of 176 firemen ((Hutchings and de Kerbrech, 2011). There
were 73 coal trimmers who handled the coal from loading to maintenance in the
bunkers and delivery to the firemen (http://en.wikipedia.org/wiki/Coal_trimmer).
One hundred tons of coal ash were disposed at sea each day (Hutchings and de
Kerbrech, 2011). Sheehan and Sickels-Taves (2002) state that
the Titanic sank with 2500
tons of coal out of the original load. Coal has been recovered from Titanic ocean bottom debris fields since
1987; coal in various studies and available for sale online is from
expeditions in 1994 and 2000.
Based on testimony of surviving
crewmen, there is good evidence for a coal fire in one of the bunkers at the
time of sailing. Bunker fires were not uncommon on steamships, caused by
spontaneous combustion within the piled coal. The usual solution to quell the
fire was to sail at full speed to quickly shovel down the coal pile until the
smoldering coal could be removed by simply adding it to the furnaces. However, Titanic survivor reports are not
consistent regarding 1) whether the fire started around the time of sailing
from Southampton or earlier during sea trials in early April; 2) if the fire
was out by Saturday, April 13, or still smoldering at collision; 3) if heat
from the fire damaged the adjacent watertight bulkhead; and 4) in what bunker
was the fire. Essenhigh (2004), calculating rate of fire spread versus coal
pile drawdown, assumed the fire was probably in the top half of the bunker
pile, however, Fireman John Dilley testified in 1912 that the fire was at the
bottom of the coal pile. There are some, including Essenhigh (2004), who
speculate that running full speed through the ice field on April 14 was not to
break an Atlantic-crossing speed record but to get rid of the burning bunkered
coal, assuming that the fire had not been extinguished the day before. In January 2017, a UK Channel 4 documentary, "Titanic, the New Evidence", proposed that both increased speed and weakening/damage to the hull and bunker bulkhead, due to coal fire heat, were instrumental in the sinking; while the presence of a coal fire, at least after sailing from Southampton, seems undisputed, fatal fire-induced metal damage is still a contentious issue (https://www.smithsonianmag.com/smart-news/coal-fire-may-have-helped-sink-titanic-180961699/ ; https://www.snopes.com/news/2017/01/06/coal-fire-sink-the-titanic/ ).
I was curious if any analysis of
recovered Titanic coal had been
undertaken. A 2012 discussion in an online Titanic
forum mentions that an analysis of coal recovered in 1994 concluded there were
5 or more geographic coal sources including Pennsylvania anthracite. The
"chat" also says that the technical analysis is no longer online
(perhaps it is the same as the now-defunct website cited by Smith (2005)). I also
could not find any such study that matches those results. However, there are
available published scientific studies, using modest-size sample sets, by two
groups of researchers. The earliest is by Michael Sheehan and Lauren
Sickels-Taves (in 2002 at Eastern Michigan University) from their presentation
at a symposium on materials issues in archaeology. The second group of authors
(Palmer et al., 2003) presented their findings at both the 2002 Pittsburgh Coal
conference and the 2003 TSOP annual meeting in Washington, DC.
Sheehan and Sickels-Taves, importantly,
detail the historic background of coal labor and supply issues in the United
Kingdom in spring 1912 that affected the availability and sources of coal
loaded on Titanic. From February
22-April 6, 1912, ending just before Titanic's
sailing from Southampton, England, on April 10, there was a major UK coal
strike that limited the national supply of coal. Some ship sailings were
cancelled due to the strike. However, in preparation for the celebrated maiden
voyage of Titanic, White Star Line,
owner of the ship, scavenged leftover coal in Southampton from other ships of
the International Mercantile Marine trust, of which White Star was a member, or
had ships already at sea take on extra coal in non-British ports. Sheehan and
Sickels-Taves mention that extra coal sacks were even stockpiled in the Second
Class public rooms of Titanic's
sister ship, Olympic. It is important
to note that coal had been already loaded on Titanic at Belfast for the sea trials (Smith, 2005); those coals, I
assume, are British since there are few Irish coals and Belfast is close to
major British coalfields across the Irish Sea.
Sheehan and Sickels-Taves examined 19
coal nodules that were recovered in 2000. They used samples made available to
them. They state there was no scientific sampling plan in seafloor recovery,
and, therefore, samples may not be representative of the actual range and
distribution of coal types onboard. Fifty grams taken from each nodule were
used for petrographic, palynological, and trace element analysis (latter data
not reported). Testing was done by TES Bretby (formerly Scientific Services
Divison of British Coal), UK, and Virginia Polytechnic Institute (VPI), USA.
The range of mean vitrinite reflectance
for the 19 samples is 0.99% to 2.28% ((British Standard 6127=ISO 7404-5).
(See my first blog post in October 2014 for description of 'vitrinite reflectance'.) Fifteen samples are "medium or low volatile bituminous coals with
reflectance values between 1.19-1.99%"; eight have reflectances between
1.65 and 1.76%. Only one sample has reflectance greater than 2%, the 2.28%Ro
semi-anthracite sample. This range of maturity is consistent with the rank
variation within the South Wales Coalfield, which it seems the authors assume
is the primary British source of Titanic
coal. One other reflectance data point is available for Titanic coal: a medium volatile bituminous 1.15%Ro from
the only sample obtained by Smith (2005).
Three
high volatile bituminous coals (0.99-1.09%Ro) of Sheehan
and Sickels-Taves were submitted for palynological analysis. Results indicate
all are Upper Carboniferous, but stratigraphic location within the British Coal
Measures could not be determined. One sample, 7B (0.99%Ro) had a type of spore rare in British coals. The
authors also say the rare spore type, not identified, is not common in the
eastern USA, but speculate it is still possible the sample could be from an
eastern US coal transported to Southampton by the Olympic.
Palmer and others (2002, 2003) examined 20
samples chosen by the RMS Titanic,
Inc. curator because "each piece appeared to be different". Their
fixed carbon and volatile matter results indicated an equal distribution of low,
medium, and high volatile bituminous coals among the samples. Ash yields are
more consistent with British coals than US coals. Trace elements were analyzed
by neutron activation, and results were compared to a data base of 24 British
coals and 1450 US coals from beds that had been exploited in 1912. Rare earth
element data "suggest. . . five distinct sources" (Palmer and others, 2003). Iron, potassium,
and arsenic concentration range and median values are more similar to British
coals. For most elements, however, the Titanic
values were less than both US and UK coals, which the authors suggest is due to
differences in the Titanic coal,
mined in 1912, versus data base samples collected decades later from the same
mine or seam.
Two of Palmer and others’ samples yielded
spores for palynological study. The authors list identified species of the
spore assemblages which indicate a Carboniferous Langsettian (Westphalian A) age. They report
that nearly all British coalfields contain such beds, but few US coals mined
in 1912 were that age.
One
research goal of Palmer and others was to determine the environmental effect of
shipwrecked coal in a deep marine setting. In the Titanic samples, higher iodine and bromine than either US or UK
coals suggests absorption of those elements from seawater; chlorine data
indicates some leaching of that element from the coal. Otherwise the coals are
unaltered, and there appears to be “minimal environmental impact” since 1912.
Both scientific studies conclude most
coal samples examined were sourced in Britain. Sheehan and Sickels-Taves write
that the limited Titanic sample set
shows "considerable uniformity" consistent with usual British sources
of coal used by White Star. Although it is known that ships like the Olympic onloaded extra coal from
non-British ports during the 1912 strike, it does not appear, with the possible
exception of their low-rank sample 7B, that non-typical coals were a
significant portion of Titanic fuel.
Palmer and others, using two different statistical methods, concluded that 12
samples are probably from the UK, three from US, but provenance of the other
four cannot be clearly assigned.
With results indicating that some of Titanic’s coal may be from the United
States, what were the typical US sources of coal for White Star Line ships? The
Coal and Coal Trade Journal (vol. 22)
wrote in May 23, 1883, that White Star Line renewed a contract with New
Central Coal Company of Maryland to fuel their ships in American ports. That
company mined Carboniferous low volatile bituminous coal (http://pubs.usgs.gov/sir/2010/5152/pdf/sir2010-5152_fig2.pdf) in
the western Maryland Georges Creek basin. I could not find if a contract
continued to 1912. Ten years later, the Colliery
Engineer (volume 14, August 1893) mentioned a White Star US contract
alluding to a Pocahontas coalfield source (West Virginia/Virginia; medium to
low volatile bituminous). Gas World
(v. 20, March 31, 1894) also mentioned that White Star Line used Pocahontas
coal. Gas World continued that
Pocahontas was the preferred coal of the US Navy, and some steamships had set
Atlantic crossing records using the same. They wrote that Pocahontas coal
"is declared by a Newcastle analyst to be 'equal to the best Welsh steam
coal, and excellent coal for steam-raising purposes.'" This still leaves
questions, however, about the source of high volatile bituminous coals identified
by both Sheehan and Sickels-Taves (their possible-US sample 7B) and Palmer and
others.
The results of the scientific studies
do call into question colliery source data or coal rank given on some of the Titanic coal COA and labels
currently found online. As mentioned earlier, some labels state the rank
is anthracite; one COA, without rank assignment, claims that the mine of origin
is Six Bells Mine, South Wales Coal Fields, UK (closed since 1988). The study
by Sheehan and Sickels-Taves clearly indicates that the exact mine of origin
for a particular lump of coal cannot be ascertained with certainty even if the
rank is determined. An included table by TES Bretby shows possible early
20th-century South Wales colliery associations for sample reflectance clusters.
Most reflectances are correlated with more than one mine, although only the
Lake Windsor colliery (Ynysybwl, Wales) is listed for the rank range of the
eight 1.65-1.76%Ro samples. In addition, none of the studied coal,
recovered in 2000, is, in fact, anthracite, but the limited number of samples
does not rule out anthracite onboard.
"Titanic: the Artifact Exhibition" at Victoria was one of the
itinerant exhibitions of RMS Titanic,
Inc.; they have a permanent artifact exhibit now at the Luxor (pyramid-shaped
casino) in Las Vegas. Another excellent exhibit of Titanic effects, mostly flotsam, is the permanent one at the
Maritime Museum of the Atlantic in Halifax, Nova Scotia (https://maritimemuseum.novascotia.ca/what-see-do/titanic-unsinkable-ship-and-halifax).
The flotsam was picked up at sea by both rescue-and-recovery and commercial
boats soon after the sinking. Copies of some items were incorporated into James
Cameron's 1997 film, Titanic: a
stairway newel post ornament like the one shot off the grand staircase, and an
entryway entablature panel similar to what Kate Winslet floats on after the
ship goes down (the real one is about half the size of the movie version). One
hundred fifty victims of the Titanic
sinking are buried in Halifax.
Essenhigh, R.H., 2004, What sank the Titanic? The possible contribution of the bunker fire (abs.): Geological Society of America Abstracts with Program, Vol. 36, No. 5, p. 42.
Hutchings, D. and de Kerbrech, R.,
2011, RMS Titanic Manual: 1909-1912
(Olympic Class): Haynes Owners’ Workshop Manual Series, Zenith Press, 160
pages.
Palmer, C.A., Finkelman, R.B., Luttrell, G.H., 2002. Coal from aMid-Atlantic Ocean shipwreck: the source of the coal in the Titanic and effects of exposure to seawater. Nineteenth Annual International Pittsburgh Coal Conference, CD-ROM. This citation added July 2020. (Also available at https://www.researchgate.net/publication/291216076_The_source_of_the_coal_on_the_Titanic_and_effects_of_exposure_to_seawater ; this article includes the raw data from the elemental analyses that is only graphed and summarized in the 2003 TSOP abstract.)
Palmer, C. A., Finkelman, R. B.,
Luttrell, G. H., Zhang, C., and Eble, C., 2003, The source of the coal in the Titanic and effects of exposure to seawater: Program and Abstracts for the 20th Annual Meeting of The Society for
Organic Petrology, v. 20, p. 54-58.
Sheehan, M.S., and Sickels-Taves, L.B, 2002,
The technological analysis of RMS Titanic’s
Coal: The enhancement of archaeological research: Material Research Society Symposium Proceedings, vol. 712, p. 525-532 (Materials Issues in Art and
Archaeology VI: Symposium held November 26-30, 2001, Boston, Massachusetts,
USA).
Smith, A.H.V., 2005, Coal microscopy in
the service of archeology: International Journal of Coal Geology, v. 62, p.
49-59. (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.895.8578&rep=rep1&type=pdf)
(This blog post, with very minor changes, appeared earlier as an article in the March 2015 edition of the TSOP newsletter (https://www.tsop.org/newsletters/32_1.pdf)